

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Subsidiary Level in Physics (WPH11) Paper 01

Unit 1: Mechanics and Materials

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023
Question Paper Log Number P75621A
Publications Code WPH11_01_MS_2310
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

eration sually either $kg m s^{-1}$ or $N s$ The expression what happens when the locity	1 1 1
sually either $kg m s^{-1}$ or $N s$ where $\kappa = \infty$ extension what happens when the	1
sually either $kg m s^{-1}$ or $N s$ where $\kappa = \infty$ extension what happens when the	1
sually either $kg m s^{-1}$ or $N s$ where $\kappa = \infty$ extension what happens when the	1
sually either $kg m s^{-1}$ or $N s$ where $\kappa = \infty$ extension what happens when the	1
sually either $kg m s^{-1}$ or $N s$ where $\kappa = \infty$ extension what happens when the	
sually either $kg m s^{-1}$ or $N s$ where $\kappa = \infty$ extension what happens when the	
sually either $kg m s^{-1}$ or $N s$ where $\kappa = \infty$ extension what happens when the	
e ∝ extension what happens when the	
what happens when the	1
what happens when the	1
	1
locity	1
locity	1
locity	
locity	1
locity	
•	
g velocity	1
	1
yn and the heliconter is	
vir and the nemeropter is	
inetic energy	
etic energy	
	1
5. do	
E_k then $v_{\text{new}} = \sqrt{2v}$	
	1
nd total input = $2.4 + 2.1$	
nd total input = $2.4 + 2.1$	
nd total input = $2.4 + 2.1$	
	1
$\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$	
A / A / /2:05	
$\Delta x/x$ or $\Delta x \propto x/a^2$ if $2\Delta x$	
$\Delta x/x$ or $\Delta x \propto x/d^2$ if $2\Delta x$	
_n, n 01	
	1
ces on an object in	
oos on an chicat in	
tes on an object in	
ces on an object in	
-	
	wn and the helicopter is inetic energy etic energy $E_k \text{ then } v_{\text{new}} = \sqrt{2}v$ $E_k \text{ then } v_{\text{new}} = \sqrt{2}v$ $E_k \text{ then } v_{\text{new}} = \sqrt{2}v$ and total input = $2.4 + 2.1$ and total input = $2.4 + 2.1$ and total input = $2.4 + 2.1$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$ $\Delta x/x \text{ or } \Delta x \propto x/d^2 \text{if } 2\Delta x$

10	B is the correct answer	1	
	A is incorrect because $W = F \cos \theta \times d$ C is incorrect because $W = F \cos \theta \times d$ D is incorrect because $W = F \cos \theta \times d$		

Question Number	Answer		Mark
11(a)	Use of $W = mg$	(1)	
	Use of $F = ma$	(1)	
	$a = 4.8 \text{ m s}^{-2}$	(1)	3
	Example calculation $W = 5.0 \times 10^{6} \text{kg} \times 9.81 \text{ N kg}^{-1} = 4.91 \times 10^{7} \text{ N}$ $\Sigma F = 7.3 \times 10^{7} \text{ N} - 4.91 \times 10^{7} \text{kg} = 5.0 \times 10^{6} \text{ kg} \times a$ $a = \frac{2.39 \times 10^{7} \text{ N}}{5.0 \times 10^{6} \text{ kg}} = 4.78 \text{ m s}^{-2}$		
11(b)	The mass / weight of the rocket / fuel decreases (because fuel is used up) Or The thrust force increases Or	(1)	1
	The resultant force increases	(1)	1
	Total for question 11		4

Question Number	Answer					
12(a)	Total momentum before (a collision) = total momentum after (a collision)					
	Or total momentum remains constant	(1)				
		, ,				
	When no external force acts Or					
	When no resultant force acts on the system					
	Or In a closed / isolated system	(1)	2			
	in a crosed / isolated system	(1)	2			
12(b)(i)	Momentum is mass ×velocity and after the collision the mass (that is moving) is double the original value.	(1)				
	(because velocity is half its original value) momentum remains the same so the law is obeyed (dependent on MP1)	(1)	2			
	OR					
	Initial momentum of A is equated to final momentum of A plus final momentum of B	(1)				
	Shows that MP1 is consistent with final velocity = half initial velocity and concludes that the law is obeyed (dependent on MP1)	(1)				
12(b)(ii)	(The gliders accelerate in opposite directions because) the magnetic					
	forces are equal in size and opposite in direction					
	Or (The gliders accelerate in opposite directions because) the magnetic forces form a Newton's 3rd law pair	(1)				
	So the velocity of one glider increases and the velocity of the other					
	decreases (by the same amount)					
	Or					
	So the resultant force on the system is zero Or					
	The magnetic forces are not external forces	(1)	2			
	Total for question 12		6			

Question Number	Answer					
13(a)(i)	Use of $s = ut + \frac{1}{2}at^2$	(1)				
	t = 0.72 (s)	(1)	2			
	Example calculation 2.54 m = $(0 \times t) + \frac{1}{2} \times 9.81$ m s ⁻² × t^2 t = 0.72 s					
13(a)(ii)	Use of $s = ut + \frac{1}{2}at^2$ with $a = 0$	(1)				
	$u = 25 \text{ m s}^{-1}$ [ecf from (a)(i)] [Show that value gives 25.6 m s ⁻¹] <u>Example calculation</u>	(1)	2			
	$u_{\rm H} = \frac{17.89 \mathrm{m}}{0.72 \mathrm{s}} = 24.8 \mathrm{m s}^{-1}$					
13(b)	(If the initial velocity is increased) the horizontal (component of) velocity is larger	(1)				
	The vertical (component of) velocity as the ball hits the ground is not affected	(1)				
	(When θ is the angle to the horizontal), $tan(\theta) = \frac{v_V}{v_H}$ so θ decreases Or					
	(When θ is the angle to the vertical), $\tan(\theta) = \frac{v_H}{v_V}$ so θ increases					
	Or Labelled vector diagram showing how the angle changes if initial velocity of ball is increased.	(1)	3			
	Total for question 13		7			

Question Number	Answer		Mark
14(a)	Straight arrow at least 6cm long representing F , with label	(1)	
	Vector triangle drawn with at least two sides in the triangle labelled, and <i>F</i> on the longest side.	(1)	
	All three arrows in correct relative directions (dependent on MP2)	(1)	4
	T = 70 N (allow range of 65 to 75 N)	(1)	7
	Example vector diagram		
	T 30° / T		
14(b)	Use of $\Delta W = F \Delta s$	(1)	
	Use of $P = W / t$ (allow	(1)	
	P = 28 (W), which is not equal to 35 (W), so is not consistent	(1)	3
	[Use of $v = \frac{s}{t}$ [1]		
	Use of $P = Fv[1]$		
	P = 28 W which is not equal to 35 W, so is not consistent [1]]		
	Allow approaches that work backwards from 35W to determine time, number of repetitions, force applied or vertical distance moved.		
	Example calculation $\Delta W = 150 \text{ N} \times 0.25 \text{ m} = 37.5 \text{ J}$ $P = \frac{37.5 \text{ J} \times 90}{120 \text{ s}} = 28.1 \text{ W}$		
	Total for question 14		7

Question Number	Answer		Mark
15(a)	Point through which weight may be taken to act	(1)	1
15(b)(i)	Determines distance from hinge to centre of gravity of ladder (0.50 m)	(1)	
	Use of moment = Fx	(1)	
	Moment (of weight of ladder about hinge) = 27 (N m) and		
	moment (of weight of board about hinge) = 22.5 (N m) Or		
	combined moment (of weight of ladder and board about hinge) = 4.5 (N m)	(1)	
	Combined moment (of the weights of the board and ladder about the hinge) is clockwise. Or		
	clockwise moment is greater than anticlockwise moment	(1)	
	The block causes a force / moment so the resultant moment (on ladder and board) is zero	(1)	5
	Example calculation		
	Distance from hinge to centre of gravity of ladder = $\left(\frac{2.7 \text{ m}}{2} - 0.85 \text{ m}\right)$		
	Clockwise moment = $54 \text{ N} \times (0.50 \text{ m}) = 27 \text{ N} \text{ m}$ Anticlockwise moment $50 \text{ N} \times 0.45 \text{ m} = 22.5 \text{ N} \text{ m}$		
15(b)(ii)	Use of moment = Fx and difference in moments from (b)(i)	(1)	
	Force = 5.6 N (ecf from(b)(i))	(1)	2
	If no other mark scored, allow 1 mark for a force calculated using a distance of 0.80 m with a valid moment using data from the question		
	Example calculation Resultant moment = 27 N m - 22.5 N m = 4.5 N m $F = \frac{4.5 \text{ N m}}{0.80 \text{ m}} = 5.63 \text{ N}$		
	Total for question 15		8

Question Number	Answer					
16(a)	They act on the same object (1)					
	They are not the same type of force (1)	2				
16(b)(i)	Use of $\varepsilon = \frac{\Delta x}{r}$ (1)					
	Use of $F = k\Delta x$ and $\sigma = \frac{F}{A}$ (1)					
	Use of $E = \frac{\sigma}{\varepsilon}$ [allow a method using $E = \frac{kx}{A}$ for 3 marks] (1)					
	$E = 2.1 \times 10^{11} \text{Pa} \tag{1}$	4				
	Example calculation $\Delta x = 3 \times 10^{-4} \times 3.8 \text{ m} = 1.14 \times 10^{-3} \text{ m}$ $F = 2.8 \times 10^{7} \text{ N m}^{-1} \times 1.14 \times 10^{-3} \text{ m} = 3.19 \times 10^{4} \text{ N}$ $\sigma = \frac{3.19 \times 104 \text{ N}}{5.1 \times 10^{-4} \text{ m}^{2}} = 6.26 \times 10^{7} \text{ Pa}$ $E = \frac{6.26 \times 10^{7} \text{Pa}}{3.0 \times 10^{-4}} = 2.09 \times 10^{11} \text{ Pa}$					
16(b)(ii)	Area under graph = elastic strain energy (can be indicated on graph) (1)					
1	Weight of electromagnet is still exerted on cable after object falls (can be indicated on graph) (1)					
	So change in elastic strain energy = area under graph between total weight (of electromagnet and steel object) and weight of electromagnet (can be shown on graph or given as an algebraic equivalent using $E_{el} = \frac{1}{2}F\Delta x$)					
1	And change in gravitational potential energy of electromagnet is weight of electromagnet × change in extension (can be indicated on graph) (1)					
	So the change in elastic strain energy stored > change in gravitational potential energy of the electromagnet (1)	5				
	Example of graph F total weight of electromagnet and steel object weight of electromagnet Area of small triangle plus rectangle = change in elastic strain energy Area of rectangle represents change in GPE extension					
	Total for question 16	11				

Question Number	Answer					
17(a)	An upwards force caused by the displacement of fluid (by an object)					
	Or (a force equal and opposite to) the weight of fluid displaced (by an object)	(1)	1			
17(b)(i)	Use of $\rho = \frac{m}{V}$ and $W = mg$ to calculate upthrust	(1)				
	Use of $\Sigma F = ma$	(1)				
	W = 13.2 (N)	(1)	3			
	Example calculation $U = 1.63 \text{ m}^3 \times 1.23 \text{ kg m}^{-3} \times 9.81 \text{ N kg}^{-1} = 19.67 \text{ N}$ $\Sigma F = 19.67 \text{ N} - \text{m} \times 9.81 = \text{m} \times 4.80 \text{ m s}^{-2}$ $m = \frac{19.7 \text{ N}}{4.80 \text{ N kg}^{-1} + 9.81 \text{ m s}^{-2}} = 1.346 \text{ kg}$ $W = 1.346 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 13.20 \text{ N}$					
17(b)(ii)	Density at 25 km = 0.05 kg m^{-3} (range $0.040 - 0.050 \text{ kg m}^{-3}$)	(1)				
	Use of $W = mg$ and $\rho = m / V$	(1)				
	Volume required at 25 km = 27 m³ (range 26 m³ to 34 m³) [show that value gives 26.5 m³] [allow ecf from b(i)] Or Upthrust from a balloon of volume 50 m³ at 25 km = 25 N (range 19.6 to					
	25.0 N) Valid conclusion from comparison of their calculated volume with 50 m ³	(1)				
	Or Valid conclusion from comparison of their calculated upthrust with weight of balloon	(1)	4			
	Example calculation Upthrust required = 13.2 N = 0.05 kg m ⁻³ × 9.81 N kg ⁻¹ × V $V = 13.2 \text{ N} \div 0.491 \text{ N m}^{-3} = 26.9 \text{ m}^3$ $26.9 \text{ m}^3 < 50 \text{ m}^3 \text{ so yes}$					

(c)	_		student's ability to inkages and fully-st		
			ndicative content ar	nd for how the a	answer is
	structured an	u snows m	ics of reasoning.		
	The followin content and l		ws how the marks soning.	hould be award	ed for indicative
	IC points	IC mark	Max linkage	Max final	1
	Te points	TC mark	mark available	mark	
	6	4	2	6	1
	5	3	2	5	
	4	3	1	4	1
	3	2	1	3	-
	2	2	0	2	1
	1	1	0	1	1
	0	0	0	0	1
					Marks
			ent and logical structures of reasoning dem		
	_	artially stru	actured with some l	inkages and line	es of 1
	reasoning				
	Answer has	no linkage	s between points an	d is unstructure	ed 0
	Indicative co	ontent:			
	IC1 (When the	ne balloon i	is released) upthrust	greater than we	eight
	IC2 the resul	tant force is	s upward		
	IC3 Velocity	of balloon	increases		
	•		ates (upwards)		

IC5 Until upthrust is less than weight so there is a resultant force

14

IC6 Velocity of balloon then decreases to zero **Or** balloon then decelerates to rest.

[Ignore references to viscous drag.]

downwards

Total for question 17

Question Number	Answer		Mark
18(a)	Small spherical object		
	Or Spherical object moving at low speed	(1)	
	Laminar flow [allow non-turbulent flow]	(1)	2
18(b)(i)	Max 3		
	Initially the velocity is zero so gradient is zero	(1)	
	As velocity increases the gradient changes	(1)	
	As velocity increases, drag increases	(1)	
	Until terminal / constant velocity when the gradient becomes constant.	(1)	3
	[If no other mark scored, allow 1 mark for velocity increases until terminal velocity is reached.]		
18(b)(ii)	Determines radius of ball bearing	(1)	
	Determines gradient	(1)	4
	Use of $F = 6\pi \eta r v$	(1)	4
	$\eta = 0.046 \text{ (Pa s)} \text{ [allow a range from 0.044 (Pa s) to 0.048 (Pa s)]}$	(1)	
	Example calculation Radius = $\frac{1.6 \times 10^{-3} \text{ m}}{\frac{2}{1.5}}$ = $8 \times 10^{-4} \text{ m}$		
	Gradient = $\frac{11.5}{1.15-0.60}$ = 20.9 $v = 0.209 \text{ m s}^{-1}$		
	$\eta = \frac{1.45 \times 10^{-4} \text{ N}}{6\pi \times 8 \times 10^{-4} \text{ m} \times 0.209 \text{ m s}^{-1}} = 0.0460 \text{ Pa s}$		
18(b)(iii)	At higher temperature the viscosity will be less	(1)	
	$F = 6\pi\eta rv$ and r is constant	(1)	
	Drag force is less (at a given speed) Or		
	Drag force (at terminal velocity) is unchanged	(1)	
	<u>Terminal</u> velocity is greater (and ball-bearing takes less time to fall)	(1)	4
	Total for question 18		13